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We study the linear stability of an arbitrary number N of cylindrical 

concentric shells undergoing a radial implosion or explosion.We derive 

the evolution equation for the perturbation iη  at interface i; it is coupled to 

the two adjacent interfaces via ηi ±1. For N=2, where there is only one 

interface, we verify Bell’s conjecture as to the form of the evolution 

equation for arbitrary ρ1 and ρ2, the fluid densities on either side of the 

interface. We obtain several analytic solutions for the N=2 and 3 cases. 

We discuss freeze-out, a phenomenon that can occur in all three 

geometries (planar, cylindrical, or spherical), and “critical modes” that are 

stable for any implosion or explosion history and occur only in cylindrical 

or spherical geometries. We present numerical simulations of possible 

gelatin-ring experiments illustrating perturbation feedthrough from one 

interface to another. We also develop a simple model for the evolution of 

turbulent mix in cylindrical geometry and define a geometrical factorG as 

the ratio hcylindrical / hplanar  between cylindrical and planar mixing layers. We 

find thatG is a decreasing function of oRR / , implying that in our model 



 

 

 

hcylindrical  evolves faster (slower) than hplanar  during an implosion 

(explosion). 

I. Introduction and Comparison 

Basic fluid flows occur in one of three geometries: planar, cylindrical, or spherical. 

When two (or more) fluids are present, the basic flow may be parallel or perpendicular to 

the interface(s) between the fluids. Perturbations to the basic flow evolve and generally 

grow with time leading to hydrodynamic instabilities. Well-known examples are the 

Kelvin-Helmholtz
1,2

 (KH)  instability occurring in flows parallel to an interface, the 

Rayleigh-Taylor
3,4 

(RT)  instability, and the Richtmyer-Meshkov
5,6

 (RM) instability 

occurring in flows perpendicular to an interface. In this paper we study RT and RM 

instabilities in cylindrical geometry.  

RT and RM instabilities appear in a variety of processes and physical scales: 

distribution of micro-organisms
7
, Inertial-Confinement-Fusion (ICF) capsules

8
, 

nuclear reactors
9
, supernova explosions

10
, etc. Our interest is primarily in ICF capsules 

and convergent hydrodynamic instabilities. Although ICF capsules are spheres, we will 

see that all convergence effects are captured in cylindrical geometry, albeit at reduced 

levels. 

A number of experiments have been carried out with the same purpose of capturing 

convergence effects: electron-beam targets
11

, cylindrical metal shells
12

, laser targets
13

, 

and gelatin rings
14,15

. Numerical Euler simulations in cylindrical geometry have been 

performed with emphasis on high Mach-number flows
16

. To obtain analytic results, we 

first study incompressible, irrotational and inviscid flows with perturbations in the linear 

regime (Sec. II–IV), then present an analytic model for turbulence in cylindrical geometry 



 

 

 

(Sec. V), and finally we compare our analytic results with numerical simulations that 

cover nonlinear and compressible flows (Sec. VI). Conclusions are given in Sec. VII.  

In planar geometry, the RT instability evolves
3,4 

according to: 

 
d2η

dt
2 – gkAη =0  (1a) 

where η t( ) is the amplitude of sinusoidal perturbations of wavelength λ = 2π
k  between 

fluids of densities ρ1 and ρ2, A = (ρ2 –  ρ1 )/(ρ2 + ρ1 )is the Atwood number, and g is the 

acceleration directed from fluid 1 towards fluid 2. In cylindrical geometry we find: 
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where R is the cylindrical radius between fluids 1 and 2, and n  is the mode number of the 

perturbation. A “dot” over a letter refers to the time derivative. We will refer to Eq. (1b) 

as “Bell’s equation” because, as far as we know, Bell
17

 was the first to consider the RT 

instability in cylindrical geometry (the RM instability was not discovered at that time). 

Bell derived the governing equations for two specific cases and made a conjecture as to 

the general form of that equation. We know of no earlier derivation of Eq. (1b), which 

indeed verifies that Bell’s conjecture was correct. His two specific cases correspond to 

A = +1 and –1 . 

In spherical geometry, we have
18
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where R is now the spherical radius between fluids 1 and 2, and 
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Eqs. (1a), (1b), and (1c) are listed in order of increasing convergence effects, and this 

is reflected in the increase of the coefficient in the 2
nd

 term of Eqs. (1b) and (1c): as we 

go from cylindrical geometry to the more convergent spherical geometry that factor 

increases from 2 to 3. Note that there is no corresponding term in planar geometry, Eq. 

(1a). Of course, in the limit of large R Eqs. (1b) and (1c) both reduce to Eq. (1a), the 

relationship between k, R, and n, being k = n/ R  . Although gravity and radial 

acceleration are not equivalent in convergent geometries, R&&  plays the role of gravity in 

Eqs. (1b) and (1c). Of course, unlike spherical geometry, cylindrical geometry has no 

physical object with a “constant” radial gravitational field, and our applications are to 

systems with moving radii such as the experiments in Refs. 11-15. 

In the same order of increasing convergence effect we list the RM results: 
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In deriving Eqs. (3a–3c) we assume that the interface moves with constant velocity after 

the “shock” which is represented as an impulsive acceleration, )(v tRg δ∆== && . This was 

done first by Richtmyer
5
 who gave Eq. (3a). Eq. (3b) is derived in the appendix of this 



 

 

 

paper, and Eq. (3c) was reported earlier
19

. Using tRR v0 ∆+= , we see that the latter two 

equations reduce to the first in the limit of large R. 

      If the velocity after the shock is not constant then the shock merely sets the initial 

conditions that one must use in solving Eqs. (1a,b,c) with the appropriate ).(tR  See, for 

example, Eq. (A13) in the Appendix. We will illustrate with several examples. 

In Sec. V, we consider a simple model for h(t ) , the turbulent mixing width in 

cylindrical geometry. To put it in context with the other two geometries, we again list the 

results of the model in increasing order of convergence effects: 
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where c is a constant. 

Strictly speaking, one must use sphericallcylindricaplanar ccc  and , , in Eqs.(4a) through (4c) 

respectively because c  may be different in each geometry. As discussed in Sec. V there is 

no computational or experimental evidence that a universal constant can describe 

turbulent mixing in all three geometries. However, since the three geometries rarely, if 

ever, co-exist, this is an issue of notation only at this stage. 



 

 

 

The above equations can be solved for any acceleration history )(tg or )(tR&& . The 

simplest results are obtained for an impulsive acceleration: 

 h  =  c A∆vt  , (5a) 

 RRtAch /v  0∆=  , (5b) 
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Unlike η(t) , which can be derived from first principles under the assumption of 

linearity and incompressibility, the equations for h (t )  are only the results of a model 

designed to capture the effect of convergence. More elaborate models, including 

dissipation effects are available
20

.  

RT and RM instabilities in an arbitrary number of spherical shells were studied in 

Ref. 19; in this paper we do the same for cylindrical shells. Several phenomena that arise 

only in the presence of convergence were reported in Ref. 19. The overreaching 

conclusion of the present paper is that each and every phenomenon that occurs in 

spherical geometry occurs also in cylindrical geometry. From the experimental point of 

view, cylindrical geometry offers ease of diagnostics, although recent experiments have 

observed some convergence effects in imploding spheres
21

. Our results establish a one-to-

one correspondence between the two geometries, and for that purpose we will use the 

same notation and terminology as in Ref. 19. 

We close this Section with a brief discussion of earlier work in plane geometry. The 

RT instability in an arbitrary number of incompressible fluid layers was studied in Ref. 



 

 

 

22. The effect of surface tension was added in Ref. 23, and compressibility in Ref. 24. 

Complementing the work of Richtmyer,
5
 who considered only the case where a shock is 

reflected from the interface between two semi-infinite fluids, Yang, Zhang and Sharp
25

 

considered the case where a rarefaction is reflected from the interface, which occurs when 

a shock moves from a heavy into a light fluid. Recent experiments on the RM instability 

covering the linear as well as the nonlinear regime are reported by Jacobs et al.
26

 Explicit 

expressions for η(t)  in these two regimes can be found in Ref. 27. For a review of RT 

and RM instabilities see Sharp,
28

 Kull,
29

 and, more recently, Brouillette.
30 

 

II. General Evolution Equations  

We consider a system of N  cylindrical coaxial shells: The first fluid, of density ρ1, 

extends between R=0  and r =R1 , and the last fluid of density ρN  extends from r =RN –1  

to infinity. In between, region i  consists of a fluid of density ρi  extending between Ri –1 

and Ri , i =1, 2, …, N with the understanding that R0 = 0 , RN = ∞, and that the first and 

last regions need special treatment. We are considering only radial incompressible flow. 

As Plesset noted for the spherical case
18

, we must assume that if ρ1 ≠ 0  then a source or a 

sink exists at r = 0  to allow that region to expand or contract while maintaining a 

constant density. 

Perturbations are introduced by taking the interface ri  between ρi and ρi+ 1, nominally 

at Ri , to be given by  

 ri = Ri + ηi cosnθ  (6) 



 

 

 

where Ri = Ri (t )  and ηi = ηi (t ) , but mode number n  and angle θ  (relative to some 

arbitrary axis) are not functions of time. 

In region i  of density ρi  and extending between ri –1 and ri we introduce a velocity 

potential ϕ i  such that rr i ∂∂ϕ /–=&  in that region. For incompressible flow ∇
2
ϕ i = 0 and 

therefore 

 θθϕ nrCnrBrRR
n

i

n

iiii coscos– –++= ln&  (7) 

where the first term gives the basic flow and the second and third terms are small (in a 

sense clarified below) perturbations to it. Bi and Ci  are “constants” in the sense that they 

are independent of r . They are functions of time and belong to region i  as indicated by 

their subscript. The special treatments in the first and last regions call for C 1 =BN = 0 . As 

in spherical geometry, conservation of mass implies that 

 Ri

2
t( )– R j

2
t( ) = constant=Ri

2
0( )– R j

2
0( ) (8) 

so that specifying the basic flow at any one interface automatically specifies the other 

interfaces—in other words Eq. (8) implies that jjii RRRR && =  and hence the first term in Eq. 

(7) is actually independent of i , just like the term ii RR &2  in spherical geometry. 

Since the derivations are very similar to the spherical case, we will only give the final 

result and then outline the steps. The basic flow is given by 
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and the general evolution equation for the perturbation amplitude ηi(t)  is given by 
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In Eq. (9) Pi,i +1 (t)  are Bernoulli “constants” and in Eq. (10) Bi  is given by 
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Eq. (10) is a second order differential equation in ηi(t)  and, as in planar and spherical 

geometry, exhibits interface coupling because it involves ηi –1, ηi , and ηi +1 . It is 

important to note that the terms denoted by n →– n( ) arise from the corresponding Ci  

terms, i.e., they stand for (Ri)
1–n

[ρi +1 dC i+ 1 / dt – ρi dCi / dt ], and C i = Bi (n →– n) . The 

reason this is important is that we have to set C1 = BN = 0 . 

We briefly outline the steps leading to Eqs. (9) and (10) that parallel the spherical 

case [compare with Eqs. (19) and (20) in Ref. 19]: rnRr ∂∂ϕθη /–cos =+= &&&  is applied 

twice: at r =ri –1 and  ri , i.e., at the two interfaces on each side of region i , and the results 

expanded in ηi,i –1  keeping only the linear terms. For this expansion to be valid, one must 

have nηi << Ri . These two equations are solved for Bi  and Ci . The results are 

substituted in the Bernoulli equation which is also expanded keeping only the lowest 

order terms (what we have called basic flow) and terms linear in η , the latter all being 

proportional to cosnθ . The lowest order terms yield the basic flow, Eq. (9), and the linear 

terms yield Eq. (10) after dropping the common factor cosnθ . 

Eq. (10) shows that the evolution is symmetric under n →– n . This is true, however, 

only when 01 == Nρρ  and we do not have to implement the special treatments in the first 



 

 

 

and last regions calling for C1 = BN = 0 . If ρ1 ≠ 0 and/or ρN ≠0 then the n →– n  

symmetry is broken as seen, for example, in Bell’s equation, Eq. (1b). 

 

III. N = 2 Case 

We must set C1 = B2 = 0  in Eq. (10) and, since there is only one radius and one 

perturbation amplitude, we simplify our notation by using R= R1,η = η1 ,  to get  
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From Eq. (11) we have 

 B1 = –
R–n

n

d

dt
Rη( ), (13a) 

and 

 C2 =
Rn

n

d

dt
Rη( ) , (13b) 

which, when substituted in Eq. (12), lead to what we have called “Bell’s equation”: 
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Alternative forms of this equation are: 
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As a historical remark, Bell derived Eq. (15) for the cases A = + 1 and –1  obtaining 

RRn /&&±  for the right-hand-side rhs( ) of that equation, and conjectured that in the general 

case it would be RRnA /&&  , which we have now verified. It is interesting that he also did 

the spherical geometry for the same two cases A = ±1 , but this time he did not venture 

any conjecture as to its general form. Plesset was the first to derive the general –A  

equation in spherical geometry, and its A-dependence [see Eqs. (1c) and (2)] indeed 

defies simple conjecture. 

In the Introduction, we mentioned that the types of solutions we find here for Bell’s 

equation match exactly those we found earlier for Plesset’s equation, so we will be brief. 

We have two class-A solutions which are valid for arbitrary R(t ) , but require specific 

values of nA (note that only this combination appears in Bell’s equation.) The first 

applies when nA = 0  for which Eq. (15) gives constant=e& and the solution is 
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Note that perturbations of any mode n  evolve with time even when ρ1 = ρ2 (A = 0) . 

This is purely a convergent effect, and the same was found in spherical geometry
19

. 

The second class-A solution brings out what we have called “critical modes”. It is 

obtained when nA = 1 for which Eq. (16) gives η&2R  = constant, and the solution is 
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(Zero subscripts refer to t=0  values). These modes are interesting because for any 

velocity history R t( ) if 00 =η& , as is often the case, then these modes do not grow at all. In 

these cases, the inertial forces that arise because ρ1 ≠ ρ2 are canceled exactly by the 

convergence effect. This is a phenomenon that does not occur in plane geometry, but of 

course it occurs in spherical geometry where it was first reported
19

. Since n  must be an 

integer, critical modes occur only for specific values of ρ2 / ρ1 given by the nA = 1 

condition. For example, the n=4  mode will be a critical mode for A=1/ 4 (ρ2 / ρ1 =5 / 3)  

in cylindrical geometry. In spherical geometry where the condition reads nA(n) = 0 , this 

would require A = 3/ 7 (ρ2 / ρ1 = 5/ 2) . 

We now turn to class-B solutions, which are valid for arbitrary nA, but require 

specific implosion or explosion history R(t ) . We have found only four such solutions and 

they are given in the Appendix. The simplest but perhaps the most interesting solution is 

for the case of shocks preceded or followed by constant velocities. The result for an 

isolated shock is Eq. (3b). A more general solution and an extended discussion is given in 

the Appendix. 

 

IV. N=3 Case 

 Applying the general evolution equation, Eq. (10), for i =1 and i = 2  we obtain two 

coupled second-order differential equations for η1,2 (t) . We have written a simple 

computer program that solves these equations, testing the program by verifying that large-



 

 

 

n-perturbations obey Bell’s equation at each interface. Results will be given in Section 

VI. Some simplification is obtained by considering Taylor’s case, ρ1 = ρ3 = 0 , i.e., a 

cylindrical fluid of any density in the region R1 ≤r ≤ R2 and no inner or outer fluid. 

Substantial simplification, however, is achieved only for the case of a thin shell, i.e., for 

∆R << R  where, following Ref. 19, we define 

 ∆R = R2 – R1 , R = R1 + R2( )/ 2  . (19a) 

The result can be written succinctly if we define the variables ∆η and η : 

 ∆η = η2 – η1 , η = η1 + η2( )/ 2  . (19b) 

After a lengthy algebra we find: 

 
R

R
dt

d

∆

∆
=

ηη
&&–

2

2

 (20a) 

and 

 ( ) 






∆

∆
=








∆

∆
Rn

R
R

R

R

dt

d
/1––2 2

2

2

η
ηη

&&  (20b) 

which can be compared with Eqs. (44a,b) in Ref. 19.  

Since in Taylor’s case the first and last densities vanish, i.e., ρ1 = ρN = ρ3 = 0 , we 

explicitly verify that Eqs. (20 a,b) are indeed invariant under n → – n  (see the discussion 

at the end of Sect. II). 

Eqs. (20a,b) can be solved for the case of a “shock”, i.e., impulsive acceleration, 

followed by a constant radial velocity: Let 
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Throughout this paper a positive (negative) time constant T will imply explosion 

(implosion). Assuming an initially stationary shell, i.e., ( ) ( ) ( ) 0000 ––– =∆== ηη &&&R , we have, 

immediately after shock passage,  

 ( )
T

R
R 0v0 =∆=+
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obtained by integrating Eq. (21). Substituting Eq. (21) in Eq. (20a) and integrating over 

0 – ≤ t ≤0+  only we obtain 
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The same substitution and integration in Eq. (20b) leads to  
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To clarify, R(0) is the same as R0, η(0) = η0 , ∆η(0) = ∆η0 , etc. Substituting ∆v= R0 / T in 

Eq. (23a), we have 
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Using Eq. (22) and the relations RRRR /– && ∆=∆  in Eq. (23b) we find 
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Eqs. (24a) and (24b) give the initial conditions immediately after the passage of the 

shock. We now return to the two basic equations, Eqs. (20a) and (20b), and solve them 

for the next stage, i.e., after shock passage, where now 0=R&&  and they can be solved in a 

simple manner using Eqs. (24a,b) as initial conditions. The result is  

 η t( ) = η 0( )– ∆η0
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It is remarkable that Eq. (25a) is identical to the spherical case (Eq. (47a) in Ref. (19)) 

and, in fact, identical to the planar case also
31

. Note that it is independent of mode 

number n . Eq. (25b) is slightly different in spherical geometry—compare with Eq. (47b) 

in Ref. 19. In the limit n → ∞, R → ∞, n / R → k , both cylindrical and spherical 

geometries reduce to the planar limit which is
31

 

 ∆η t( ) =∆η0 – η0 ∆v∆R0 k
2
t  . (26) 

By solving numerically the coupled differential equations for arbitrary 

ρ1, ρ2 , ρ3 , R1 , R2 , and n , we have verified that for large-n perturbations the interfaces 



 

 

 

decouple so that one can apply Bell’s equation at R1 and R2  independently. Similarly if 

R2 – R1 >>R1, i.e., for thick shells, or if ρ2 = 0 . In general, since implosions (explosions) 

cause a shell to thicken-up (thin-out), interface coupling or feedthrough decreases 

(increases) in converging (diverging) flows. This behavior is the same in cylindrical as it 

was in spherical geometry.
19

 

Consider a cylindrical shell with 26)0( and 25)0( 21 == RR  (the units are immaterial – 

only ratios are relevant). It implodes in 8 units of time to a final 1)8(1 =R . By mass 

conservation, 2.7)25261( ))0()0(( 2/12222/12

1

2

2

2

12 ≈−+=−+= RRRR  at 8=t . The same 

example was considered in spherical geometry
19

 where 3/13

1

3

2

3

12 ))0()0(( RRRR −+=  

5.12)25261( 3/1333 ≈−+= . In other words the shell thickens up from an initial value of 1 

to a final thickness of 6.2 in cylindrical geometry compared with 11.5 in spherical 

geometry. Clearly, in the early stages when the shell is thin perturbations will readily feed 

through from one surface to another, but in the later stages as the shell thickens up the 

interfaces decouple and the perturbation at each surface grows independently of the other. 

The evolution of the perturbations depends on the implosion history. We illustrate 

with two different implosions, shown in Fig. 1(a) and Fig. 2(a), of the same cylindrical 

shell with the same initial ( 26)0(,25)0( 21 == RR ) and final ( 2.7)8(,1)8( 21 ≈= RR ) 

configurations. The first, Fig. 1(a), is the “accel/decel” implosion studied earlier
19

: 

5.11 −=R&&  for 40 << t  and 5.11 +=R&& for 84 << t . One can easily verify that this leads to 

1)8(1 =R . The second, Fig. 2(a), is a ‘shock” implosion, ( )tR δv∆=&& , as in Eq. (21). To 

obtain 1)8(1 =R , we set .7.28/)
2

5111
5.25(v −≈

++
−−=∆  



 

 

 

We should clarify that by “constant” velocity we mean a time-independent velocity at 

one radius only (the average radius R in the example shown in Fig. 2, or, for Eq. (3), the 

interface between two fluids). As we discussed following Eq. (8) expressing mass 

conservation of incompressible fluids, the velocity throughout the fluid is radius-

dependent through jjii RRRR && =  so that the velocity is inversely proportional to the radius. 

The evolution of the perturbations can be calculated in one of four ways. The simplest 

is to apply Bell’s equation at each interface. Since feedthrough is ignored in this 

approach, one can get completely wrong results (we will not show them), particularly 

when an initial amplitude vanishes. It remains zero, according to Bell’s equation, while in 

fact feedthrough from the other interface induces a finite amplitude possibly growing very 

large at the initially smooth surface. 

The exact solution is obtained by solving Eq. (10). The results are shown as solid 

lines in Fig. 1(b) and Fig. 2(b) for the “accel/decel” and “shock” implosions respectively. 

We have chosen ,031 == ρρ  10=n , and ,1)0()0( 21 ==ηη  (the units here are immaterial 

for a different reason: The theory is linear). These figures show how perturbations evolve 

differently with different implosion histories even though the initial and final 

configurations are the same in both types of implosion. The “accel/decel” implosion is 

clearly much more susceptible to perturbation growth. We found the same to be true for 

other values of n  or )0(
2,1η . 

The third way is to solve the thin-shell equations, Eqs.( 20a) and (20b). The results 

are shown by the dashed lines in Fig. 1(b). They are surprisingly good until 5≈t  when 

they start deviating substantially from the exact results. Clearly the shell cannot be treated 

as “thin” after this time. Actually, the shell has not yet thickened-up much, but R  has 



 

 

 

decreased to ~9, and the condition for validity reads 1/ <<∆ RR , good at  0=t  when 

5.25/1/ =∆ RR  but not after t>5 when 3.0/ >∆ RR . 

The fourth way is to use the analytic results, Eqs. (25a) and (25b), as shown by the 

dashed lines in Fig. 2(b). The same result is obtained by solving Eqs. (20a) and (20b) 

numerically, serving as a check of our numerical algorithm. While Eqs. (20a,b) are valid 

for any implosion (or explosion) history, Eqs. (25a,b) are valid only for a “shock”, Eq. 

(21), with a negative (or positive) v ∆ . We find, again, that the thin-shell approximation 

breaks down after 5>t . 

Note that although the average radius R is moving at constant velocity throughout the 

whole implosion, 1R accelerates inward and 2R accelerates outward, particularly at late 

times. In and of themselves both motions are “stable” in the RT sense: dense material 

( 2ρ ) accelerating into “vacuum” ( 031 == ρρ ). The well-known oscillations of stable 

gravity waves exhibit themselves at late times, ,7>t  when both perturbations 1η  and 

2η begin a phase-reversal in the exact calculation. 

Eq. (25a) implies that if  0)0( =η  ( 2010 ηη −=  , i.e. “varicose” perturbations) then 

tt ~)(η . If 0)0( =∆η  ( 2010 ηη = , i.e., “sinuous” perturbations) then )0(~)( ηη t  is 

constant. This is the example shown in Fig. 2(b) where the dashed lines 2,1η  grow large 

with opposite signs but their sum remains constant. Although valid for thin shells and 

031 == ρρ  only, Eqs. (25a,b) are the only explicit two-interface analytic solutions known 

to us. The same is true of spherical geometry – only thin RM solutions are known.
19

 The 

situation is different in plane geometry where one need not assume thin shells and the RM 

solutions have been reported
31

 for arbitrary thicknesses. Of course the first two-interface 



 

 

 

result was obtained by Taylor
4
 for the RT instability and for that reason we refer to the 

031 == ρρ  case as “Taylor’s case” in any geometry or instability. 

V. A Model for Turbulent Mix in Cylindrical Geometry 

The presence of the dimensionless variable R / R0  complicates matters in both 

spherical and cylindrical geometries when we try to develop a model for turbulent mix. 

Our approach in the spherical case was to start with Plesset’s equation and take the limit 

 n →∞ , η → 0,nη / R → c=const  (27) 

to derive (see Eq. (50) in Ref. 19) 

 )(spherical0–
1 3

3
=





RcA

dt

dh
R

dt

d

R
&& , (28) 

where h  is now interpreted as the turbulent mixing width into the heavier fluid.  

If we apply the same methodology to Bell’s equation in the form of Eq. (16), we 

obtain 

 al)(cylindric0–
1 2

2
=





RcA

dt

dh
R

dt

d

R
&& . (29) 

For any given implosion or explosion history R(t )  the solution to this equation can be 

found: 

 ( ) ( ) dttdRR
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We shall limit to the RT and RM cases and assume h 0( )=dh0 / dt = 0 . For the RT case, 

we take R = R0 + 1
2 gt

2
, where g  is a constant acceleration, and find: 

 h =
cAgt 2

15

3

2
+

4R0

R
+

2R0

R – R0

ln R / R0( )
 
 
 

 
 
 

 . (31) 

For the RM  case we take )(v tR δ∆=&& , R = R0 + ∆vt , and find 

 h =
cA∆vt R0

R
. (32) 

The planar limits can be obtained by letting R / R0 →1 in the above equations yielding
19

 

 h planar =
1

2
cAgt

2
, RT ,  (33) 

 h planar = cA∆vt , RM . (34) 

Defining the geometrical factor G  as the ratio between hcylindrical and hplanar , we have  

 G = 3 + 8
R0

R
+

4R0

R – R0

ln R / R0( )
 

  
 

  
/15, (35) 

for a constant acceleration, and  

 G =
R0

R
 (36) 

for a shock, to be compared with the spherical geometrical factors given in Ref. 19 

(Eqs. 60 and 61).  



 

 

 

As expected, Eqs. (35) and (36) imply that for an implosion (explosion) the mixing 

width is larger (smaller) than the similarly driven planar case, i.e. G > 1 (G <1) for an 

implosion (explosion). For the very late (R/ R0 →∞)  stages of an acceleration-driven 

explosion Eq. (35) predicts G →1/ 5 , to be compared with 1/ 7  in spherical geometry
19

. 

For a shock-driven explosion G → 0 but the mixing width h  approaches a constant: 

using ∆vt = R – R0  in Eq. (32) we get h → cAR0 , to be compared with cAR0 / 2  in 

spherical geometry
19

. 

In this highly simplified approach we have only one constant, c , determining the 

evolution of mix in planar, cylindrical, or spherical geometry and for arbitrary 

acceleration histories. In the Introduction we discussed the possibility of using different 

constants in different geometries, in which case the above geometrical factors should be 

multiplied by ./cplanarlcylindricac  While this may decrease the predictive power of our model 

the dependence on convergence, i.e., on 0/ RR , is a non-trivial feature of the above 

geometrical factors. There is no dependence on initial conditions other than a simple 

additive constant h0 . As far as we know there have been no direct numerical simulations 

(DNS) of turbulence in cylindrical or spherical geometries. In planar geometry the DNS 

of Cook and Dimotakis
32

 find that the evolution of the RT mixing layer depends on initial 

conditions suggesting that planarc may depend on initial perturbation wavelengths and 

amplitudes. On the other hand a variety of RT  experiments
33,34

 with different initial 

conditions indicate a fairly constant c in the range c ≈ 0.10 – 0.14 . For the RM  case the 

impulsively driven linear electric motor experiments [Dimonte and Schneider, Ref. 34] 

do not exhibit growth linear with time, while shock tube experiments
35

 are consistent 

with tcAh v∆=  and c ≈ 0.10 – 0.14 . The situation is even more confusing with the few 



 

 

 

mix experiments done in cylindrical
36

 and spherical
37

 geometry, both carried out in shock 

tubes. Our presentation of an all-encompassing yet minimal model is motivated more by 

its simplicity than by any detailed comparison with experiments, many more of which are 

clearly needed to clarify the mix generated by RT and RM  instabilities in various 

geometries. 

 

VI.       Numerical Simulations 

We now turn to 2D CALE
38

 simulations of gelatin-ring experiments
15

. In those 

experiments gelatin rings of various thicknesses with perturbations on their outer surfaces 

were imploded and photographed. Preliminary results from CALE simulations were 

reported earlier
39

. Here we consider the following configuration: ρ1 =ρ3 =1.2 × 10
–3

g / cm
3
 

for air at atmospheric pressure and temperature and the oxygen-acetylene mixture, the 

driving gas, ρ2 =1.0 g/ cm
3
 for the gelatin ring. R1 =4 cm, R2 =5.5 cm. This 1.5 cm thick 

gelatin ring is inside a 10 cm-radius containment fixture. The problem is initiated by 

sourcing 6.15 k J / g  of energy into the driving gas region over a 10 µs  period, bringing 

the pressure up to 16.5 atm. The gelatin-ring implodes compressing the air trapped in the 

center and, at about 770µs , bounces off the compressed (~100 fold) air and moves back 

out. This motion, which is consistent with the experimental observations of R1,2 (t ) , is 

shown in Fig. 3. The reverberations in ii RR &&& and  are the results of sound waves captured in 

the compressible hydrocode CALE. We note that in contrast to planar layers where only 

one quantity (acceleration) controls the evolution of perturbations, in cylindrical geometry 

all six quantities 2,1R , 2,1R& , and 2,1R&&  enter in Eq. (10). 



 

 

 

Over the 1000 µs  of implosion and bounce the density ρ 3 of the driving gas changes 

by less than 19%. The density ρ2  of the gelatin ring, using an equation-of-state (EOS) for 

water, changes by less than 2%. The density ρ1 of the trapped central air, on the other 

hand, increases 100-fold, as mentioned above, because R1  decreases tenfold from 4cm 

down to ~4mm. We did two sets of calculations: One in which we used a constant 

ρ1 =ρ1 (0)  in Eq. (10), and another using ρ1(t) . The results differed by less than 5%, 

probably because the density of 100-fold compressed air, 0.12 g /cm
3
, is still much less 

than the density of the gelatin ring at 1g /cm
3
. At higher compressions one must modify 

the perturbation equations as has been done in spherical geometry
40

. 

A comparison with the experimental results was presented in Ref. 39 and will not be 

repeated here. Instead, we focus on four different configurations with emphasis on where 

the solutions to Eq. (10), which are linear and incompressible, agree or disagree with the 

fully nonlinear and compressible CALE simulations. The four cases all have n = 6 and 

are distinguished by the initial values η1 (0),η2 (0)( )measured in millimeters, and are 

0,0.5( ), 0.5, 0( ), 0.5,0.5( ), and –0.5,0.5( )  for cases (a), (b), (c), and (d) respectively. In the 

nonlinear simulations bubbles of air and spikes of gelatin evolve differently at late times, 

particularly at the inner surface. We will display both bubble and spike amplitudes and 

compare them with the linear coupled calculation based on Eq. (10). Note that for this 

linear theory cases (c) and (d) are merely the sum and difference, respectively, of cases (a) 

and (b), but of course the nonlinear results are not related so simply. 

The evolution of the amplitudes are shown in Figs. 4 thru 7 for cases (a) thru (d) 

respectively. In all cases the early evolution of the amplitudes and feedthrough from one 

interface to another is well represented by the linear coupled theory. At late times bubbles 



 

 

 

and spikes diverge and the linear theory greatly overestimates the inner amplitude η1  in 

all cases, as expected (for a comparison between the linear and nonlinear regimes in 

planar RM experiments see Ref. 26. From the explicit expressions in Ref. 27, t~η  in 

the linear regime and slows down to tln~η  in the nonlinear regime). 

Snapshots from the 2D CALE simulations are shown in Figs. 8 and 9 for cases (a) and 

(d) respectively. We do not show snapshots for cases (b) and (c) because they are similar 

to case (a), Fig. 8, where long gelatin fingers penetrate the central air cavity at late times. 

It is interesting that the last case, η2(0)=– η1 (0)=0.5mm , displays minimum disruption 

of the inner surface at late times, while the case η2(0)=η1(0)=0.5mm , case (c), displays 

the most disruption, emphasizing the importance of the relative phases between η1(0)  and 

η2(0) . The analytic theory also shows the correct ordering with case (c) (case (d)) 

predicted to have maximum (minimum) growth in η1(t) . 

Comparing Fig. 8, case (a), with Fig. 9, case (d), it is interesting to note that adding an 

initial perturbation with the “right” phase at the inner surface reduces the late-time 

perturbations at that surface. We hope future experiments will test these predictions. 

One of the applications mentioned in the Introduction was ICF capsules. The above 

gelatin ring experiments help shed light on feedthrough and subsequent growth at the 

inner surface of single-shell capsules like the ones planned for NIF
8,41

. Another class of 

capsules involves double-shell designs
8,42

 where an inner capsule containing the fuel gas 

is imploded after colliding with an outer shell. To shed light on the many instabilities that 

can occur in double-shell capsules we have studied the possibility of double-shell gelatin 

rings. The following system appears to have a wide range of instability growth and is a 

reasonable experiment to build: R1 = 2,R2 = 2.5,  R3 = 4.5, R4 =5.5, all in centimeters, 



 

 

 

driven by the same oxyacetylene gas. In other words we have taken the original 1.5 cm 

thick single shell and broken it up into a 1 cm-thick outer ring and a 0.5 cm-thick inner 

ring, keeping the outermost surface at 5.5 cm as before. With atmospheric air trapped in 

the central cavity and in the annular region between the two shells (i.e. R2 < r <R3 ), the 

1D motion of the shells is shown in Fig. 10. 

Note that the implosion is controlled by the outer, heavier shell. It collides with the 

inner, lighter shell, twice: First at ~ 550µs , and a second time at ~ 700µs . The first 

collision drives the inner shell inwards which bounces off the central air and tries to move 

out, only to be driven in again by the second collision. The outer shell moves out only 

after that second collision, allowing the inner shell to expand after its second bounce off 

the central air. 

We have studied a large number, but by no means all of the possible combinations of 

perturbations initiated at one or more interfaces. Of course the mode number can be 

different at the different interfaces. For brevity we show only 3 cases, all with n = 6 

perturbations of magnitude 0.25 mm. The first two cases have a perturbation at R4  or R3  

only, i.e., at the outer or inner radius of the outermost shell. These are shown in Figs. 11 

and 12 respectively. The contrast is striking: The first case hardly disrupts the inner shell, 

but the second case leads to a large disruption. 

We found that the density of the air in the central cavity was a good measure not only 

of its compression but also the disruption of the cavity. The densities are shown in 

Fig. 13. During the first bounce ρ1 increases to 0.54g /cm 3  in practically all cases. The 

second bounce, however, discriminates between the two cases mentioned here: ρ1 goes 



 

 

 

up to 0.14 g / cm3  for the case when R4  was perturbed, compared with 0.06 g /cm 3  when 

R3  was perturbed initially. Clearly, more disruption implies poorer compression. 

Simulations where only R1  or R2  was perturbed yielded quite good compressions 

with ρ1 going up to 0.11g /cm 3  on second bounce. The case where all interfaces were 

initially perturbed showed poor compression: 0.52 g /cm 3  and 0.07 g /cm 3  on first and 

second bounce respectively. Fig. 14 shows snapshots of this last case. 

 

VII. Conclusions 

All the results presented in this paper for cylindrical shells have a one-to-one 

correspondence with their counterparts in spherical shells: Class A and class B solutions, 

critical modes, geometrical factors, symmetry under n →– n , etc., occur in cylindrical as 

well as spherical geometry. It is important to know the details as given here and in Ref. 

19 for the purpose of making comparisons or explaining experimental data, but the 

phenomena are qualitatively the same in both geometries. 

As mentioned in the Introduction the advantage of cylindrical geometry lies primarily 

in ease of diagnostics. The gelatin-ring experiments of Weir et al. are a good example 

where direct photographs of shell distortions are taken
15

. While it may be possible to 

prepare and perhaps even implode a hollow gelatin sphere, imaging the inner (and more 

interesting) surface will be extremely difficult. 

We conclude that cylindrical gelatin-ring experiments can exhibit a variety of 

feedthrough phenomena. Diagnostics of such large-scale phenomena is relatively 

straightforward, and serve as tests of highly nonlinear calculations on the evolution of 

perturbations. In the context of ICF capsule implosions the large-scale perturbations can 



 

 

 

serve as a substitute for studying drive asymmetries. A significant advance in diagnostics, 

however, is needed to observe the small-scale mix expected to occur even at smooth 

surfaces. Reliable calculations of such turbulent phenomena require 3D calculations 

beyond our present capabilities, and remain a challenge for the future. 
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Appendix 

In this appendix, we present four class-B analytic solutions to Bell’s equation, valid 

for arbitrary nA . 

(i) R= R0e
t /T

, where T  represents a time constant and the motion is an explosion 

(implosion) if T > 0(T < 0). Note that RR
T

2

1=&&  is positive in both cases. The solution to 

Eq. (14) is: 
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where 

 γ± =
1

T
–1± nA[ ]  . (A2) 

We may write the solution η(t)  not as a function of t  but as a function of R  by using 

 e
γ ± t

= R/ R0( ) –1± nA
. (A3) 

Note that for nA = 0 the solution reduces to Eq. (17) and for nA =1 (critical modes) to 

Eq. (18). 

(ii) R= R0 1+ t / T( )
1/2

. The solution to Eq. (14) is: 

 η x( )=η 0( )cos γx( )+
η

x
0( )

γ
sin γx( )   , (A4) 

where 

 x =ln 1+
t

T

 
 

 
 

, γ =
1

2
nA – 1   . (A5) 

Bell’s equation in terms of x  simplifies to 

 
d2η

dx
2 +

nA – 1

4
η = 0 (A6) 

whose solution is Eq. (A4). Note that 0)0()0( ηη
η

&Tt
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d

x === . 

(iii) 2

2

1
00 gttRRR ++= & , g  = constant. As in spherical geometry, the most difficult case 

turns out to be the constant acceleration case. Defining 
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Eq. (14) becomes 

 x 1– x( )
d2η
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dη

dx
+ 2 nA – 1( )η = 0  . (A9) 

The solution to this hypergeometric equation is F a,b; c; x( )  where 

 a =
3+ 1+ 8nA

2
, b =

3 – 1+ 8nA

2
, c = 2  . (A10) 

For the case 0==gR&&  Eq. (16) implies 0

2

0

2 constant ηη && RR ==  and hence the solution is 

formally identical to that of critical modes, Eq. (18), but here there are no limitations on 

nA , which can assume any value. Instead, the motion is given by  

 ( )TtRtRRR /1000 +=+= &  (A11) 

which, when substituted in Eq. (18), gives 
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This result will prove useful in our next case. Note that η(t)  is independent of nA  unless 

0η&  depends on it, as indeed it will when the motion is initiated by a shock. 

(iv) )–(v sttR δ∆=&& . As Richtmyer
5
 showed, an impulsive acceleration can represent 

the effect of a shock provided certain modifications are made. We substitute 

)–(v sttR δ∆=&&  in Bell’s equation and integrate over ts–
≤t ≤ ts+

, where ts =  time of shock 

arrival and ts±
 are times immediately before and after ts . We find 

 ( ) v1–– ∆+=+

s

s

R
nA

η
ηη &&    (A13) 

where –η&  and +η&  are the growth rates immediately before and after the passage of the 

shock, ηs  is the amplitude at shock arrival time and Rs  is the radius at that time. The 

effect of the shock is to change the growth rate η& from –η&  to +η&  when the interface 

velocity changes from v – to v+ , and of course ∆v=v+ – v–  is the jump in velocity. For an 

initially stationary interface 0v–– ==η& . 

Interesting phenomena, however, can occur if the interface is not stationary before 

shock arrival as, for example, in a two-shock system. Eq. (A13) applies for each shock. 

The first shock will activate R  and η so that the corresponding velocities –v  and –η&  will 

be nonzero just before the arrival of the second shock, which may or may not be in the 

same direction as the first shock. The second shock may stop the motion, i.e., 

v+ = v – + ∆v = 0 . Eq. (A13) still applies with ∆v= – v–  and the growth rate will, in 

general, change and perturbations will evolve on that stationary )0v( == ++R&  interface. 



 

 

 

Perhaps a more interesting phenomenon is “freeze-out”
31

, i.e. 0=+η& . Clearly, the 

right-hand-side rhs( ) of Eq. (A13) can vanish with the appropriate choice of ∆v , for 

example. In this case, the amplitude η will freeze at the value ηs  it had at the arrival time 

of the second shock. This kind of double-shock freeze-out depends on the wavelength of 

the perturbation because the rhs  of Eq. (A13) depends on n . We will not elaborate on the 

shock timing requirements to produce a freeze-out as we have already done so for planar 

and spherical geometries and the interested reader can work out the conditions for 

vanishing +η& . Let us just mention that in a two-shock system it is not possible to achieve 

simultaneously the two phenomena discussed above, i.e. to stop R )0v( =+  and η ( )0=+η&  

at the same time, though each process by itself is quite feasible. 

Assuming a shock arriving at ts = 0  and 0v –– ==η&  we get ( ) 00 /v1– RnA ∆=+ ηη& . 

Eq. (A12) simplifies to  
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which is Eq. (3b). 

It is well known that in plane geometry the RM  amplitude undergoes a phase reversal 

if the shock moves from a heavy to a lighter fluid. Of course the amplitude must first go 

thru zero and from Eq. (3a), this “zero-time” is 

 t = –
1

kA∆v
 (A15a) 



 

 

 

requiring ∆vA < 0 . In cylindrical geometry η = 0 at a time when, from Eq. (A14),  

 R / R0 = 1–
1

nA
 (A15b) 

requiring an implosion (explosion) if A > 0(A < 0). These requirements are in complete 

agreement with our intuitive expectations of when a phase reversal can occur. 

In general, shorter-wavelength-perturbations evolve faster than longer-wavelength-

perturbations and hence require less time or motion to zero-out before overshooting and 

growing with the opposite phase. For example, for A = 1 the n = 10  mode will go thru 

zero when the cylindrical or spherical radius shrinks by ~10%. Of course there is no 

phase reversal if A = 0  and the growth for any n is purely geometrical: RRt /)( 00ηη =  

from Eq. (A14). 
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FIGURE CAPTIONS 

FIG. 1. (a) The radii of an “accel/decel” implosion of a cylindrical shell with 

26,25 2010 == RR  in arbitrary units. The acceleration 1R&& is -1.5 for 4<t  and +1.5 for 

4>t . 2R  is calculated by mass conservation, 2

10

2

20

2

12 RRRR −+= . (b) The evolution of 

the perturbation for the implosion shown in (a), assuming 031 == ρρ  and 01=n . The solid 

lines are the exact solutions from Eq. (10). The dashed lines are solutions to the thin-shell 

equations, Eqs. (20a,b). The initial conditions read 1)0()0( 21 ==ηη . 

FIG. 2. Same as Fig. 1 for a “shock” implosion: ( )tR δv∆=&&  with 7.2v −=∆ . The initial 

and final configurations of the shell are the same as in Fig. 1 and, as in Fig. 1, 031 == ρρ  

and 01=n . The solid lines in (b) are the exact results from Eq. (10), and the dashed lines 

are from Eqs. (25a,b) which are the solutions to Eqs. (20a,b) for ( )tR δv∆=&& . 

FIG. 3. (a) The radius, (b) the radial velocity, and (c) the radial acceleration of a 1.5 cm 

thick cylindrical gelatin ring as calculated by CALE for the experimental conditions 

described in the text.

 

FIG. 4. Evolution of perturbation amplitudes η1(t ) and η2 (t)  for case (a) with initial 

conditions η1(0) = 0  and 5.0)0(2 =η mm. The mode number is n = 6. The continuous line 

is the result of the linear coupled equations, Eq. (10). The dashed lines are the bubble and 

spike amplitudes from 2D CALE simulations shown in Fig. 8. 



 

 

 

 

FIG. 5. Same as Fig. 4 for the case (b) η1(0)= 0.5mm,η2 (0)=0 . 

 

FIG. 6. Same as Fig. 4 for the case (c) 5.0)0()0( 21 ==ηη mm. 

 

FIG. 7. Same as Fig. 4 for the case (d) 5.0)0(mm,5.0–)0( 21 == ηη mm. Snapshots in Fig. 

9. 

 

FIG. 8. Snapshots of the gelatin-ring implosion, calculated with CALE, for the case (a) 

5.0)0(,0)0( 21 == ηη mm. Snapshots for cases (b) and (c) are similar to this case. The 

average radial motion was shown in Fig. 3. The evolution of the perturbations is shown in 

Fig. 4. 

 

FIG. 9.  Same as Fig. 8 for the case (d) 5.0–)0(1 =η mm, 5.0)0(2 =η mm. 

FIG. 10. The motion of R1, R2, R3, and R4  versus time for gelatin double rings, assuming 

atmospheric air trapped in the central cavity (0 < r < R1 )  and in the annulus between the 

two shells (R2 < r < R3) . The outer shell is driven by the same energy deposition as the 

single-ring experiments. 



 

FIG. 11. Snapshots of the double-ring implosion for the case η1(0) =η2(0) =η3(0) = 0 , 

25.0)0(4 =η mm. 

 

FIG. 12. Same as Fig. 11 for the case ,0)0()0()0( 421 === ηηη 25.0)0(3 =η mm. 

 

FIG. 13. The density ρ1(t)  of the air trapped in the central cavity of the double-ring 

calculations: The continuous line refers to the case 25.0)0(4 =η mm, all others being zero 

(see Fig. 11), and the dashed line refers to the case 25.0)0(3 =η mm, all others being zero 

(see Fig. 12). The second-bounce compression for the latter case is reduced by a factor of 

~2. 

 

FIG. 14. Same as Fig. 11 for the case 25.0)0()0()0()0( 4321 ==== ηηηη mm. ρ1(t)  for 

this case is similar to the dashed line in Fig. 13, reflecting poor compression at second 

bounce. 



 

 

2 

 

 

FIG. 1 

 



 

 

3 

 

 

 

FIG. 2 

 

 

 



 

 

4 

 

 

 

FIG. 3 

 

 

 



 

 

5 

 
 

 

 

FIG. 4



 

 

6 

 

 

 

 

 

 
 

 

 

FIG. 5 

 

 

 



 

 

7 

 

 
 

 

FIG. 6



 

 

8 

 

 

 

 

 

 
 

 

 

FIG. 7



 

 

9 

 

 

 

 

 
 

 

 

 

FIG. 8



 

 

10 

 

 

 

 

 

 
 

 

 

 

FIG. 9



 

 

11 

 

 

 

 

 
 

 

 

 

FIG. 10



 

 

12 

 

 

 

 

 
 

 

 

 

FIG. 11



 

 

13 

 

 

 

 
 

 

 

 

 

FIG. 12 

 

 



 

 

14 

 
 

 

 

 

FIG. 13



 

 

15 

 

 

 

 

FIG. 14 

 


